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SHOCK EFFECTS ON INTERFACES 

I. INTRODUCTION 

1. General. From February 1972 through April 1974, the U.S. Army Mobility 
Equipment Research and Development Command (MERADCOM) had subjected over 

100 specimens of armor steel to successful impacts at hypersonic velocities' in the 
Naval Research Laboratory light gas-gun facility. The immediate purpose of these 
experiments was to develop heuristic theory capable of predicting backfacc spall and 
associated phenomena resulting from impacts of small projectiles. The long-range ob- 
jective was to obtain sufficient understanding of the impact phenomena to enable the 
design of projectiles (or spallators) capable of optimizing the backface spall for the pur- 
post: of producing damage to components inside of military vehicles. 

Results and analyses of most of the experiments performed prior to 
December 19715 have been reported previously.2"6 In this report, phenomena peculiar 
to interfaces and results obtained between December 1973 and April 1974 are reported. 

II. BACKGROUND 

2. Summary of Hypervelocity Impact Experiments.   Projectile material, shape, 
size, configuration, velocity, and impact angle were variable. In all, 36 experiments 

were performed using nylon spheres as projectiles, 14 using steel spheres, 14 using 

liquid-filled polymer shells, and the remainder using special projectiles of various 

shapes, sizes, materials, and configurations. These special projectiles included spheres 
of titanium, glass, A1203, tungsten carbide (WC), magnesium-lithium (Mgl.i), hollow 
Lexan and steel spheres, hollow and solid Lexan cylinders, and Lexan cylinders with 
steel tips. 

Hypersonic  velocities or by pervc loci tics imply velocities of about 2 to 10 km/s.    The terms are misnomers bul 
are used widely. 

" J. W. Bond. Jr., "Shock Damage and Back race Spall in Materials," Proceedings of the Army Symposium <»i 
Solid Mechanics. 1972. Army Materials and Mechanics Kesearch ("enter Keport, AMMHC. MS 7H-2. September 
1972. 

J.   W. Bond, Jr., and (I. W. 1 llrich, Two-Dimensional Spoliation Induced by llyperivlocity Impact in Urough! 
Sleel I'lale, U.S. Army Mobility Equipment Kesearch and Development Center Keport 2067, July 197.1. 

J.   W.   Bond, Jr., "Hypervelocity Impact Shock-Induced Damage to Steel Armor," Army Science Conference, 
West I'oint. N.V.. June 1974. 

J.   \\.   Bond, Jr., High li-essures Induced by Short-I'ulse Lasers, li.S. Army Mobility Equipment Kesearch and 
Development Outer Keport 20110, November 1973. 

6 D.   A.   Shockey, et al.. Physical Changes Occurring in Armor Steel Under llyperivlocity Impact, Stanford Ke- 
search Institute Final Keport on USAMERDC Contract DA A D05-73-C-0025, March 1974. 



The diameter I) of the nylon spheres varied from 0.795 to 1.91 centimeters, 

but most of the experiments used spheres with diameters of 0.953 and 1.19 centi- 
meters. The steel spheres had diameters ranging from 0.554 to 1.153 centimeters, and 

liquid-filled Lexan spheres had diameters between 0.86 and 1.0 centimeter. 

Target materials included 1.27-, 2.54-, and 3.81-eentimetcr-thick rolled 

homogeneous armor corresponding to MIL-S-12560B steel, 3-centimeter-lhick cast 

armor corresponding to MIL-S-113561), 3.81-centimeter-thick Soviet rolled homo- 
geneous steel armor, 1.25-centimeter-thick Electro Slag Remelt (ESR) steel, and 1.27- 

centimeter-thick MS-12560 steel backed by 1.27-centimeter-thick Flexiglas (used in 

two separate experiments). 

3. Summary of Previous Results. As indicated earlier, the prime objective of 
these experiments was to learn more about the physics and metallurgy of backface 

spall. However, these were numerous "surprises," most of which have not been 
explained satisfactorily. These various findings will be summarized briefly in this 
section. 

A schematic diagram of the impact damage geometries is shown in Figure 1. 
Most of the experiments resulted in craters and spall layers as depicted in Figure 1, 
part (a), which is representative of a 0.95-centimeter nylon sphere impacting MS-12560 
steel at 4 to 5 km/s. The serrations noted on the crater floor are quite regular for 
nylon-on-steel impacts. These serrations have not been explained, but it is suggested 
that they might be due to dynamic instabilities. They do not exist for steel-on-steel 
impacts. This difference also has not been explained. The large macrocracks shown 
extending below the crater floor start at the serration valleys and always go in the di- 

rection indicated, i.e., toward the rear surface of the target and toward the crater 
center line. Similar macrocracks exist for steel-on-steel impacts, but they go upward 
toward the front surface of the target and away from the crater centerline. In either 
case, the macrocracks have not been explained; in particular, the reason for the marked 
difference between the nylon-on-steel and the steel-on-steel macrocracks is unknown. 

There is a dark, spherically symmetric region below the crater floor that approxi- 
mately covers the region penetrated by the macrocracks. In this region, the hardness is 
about twice that of the unshocked steel, and the grain structure is much finer. 

Although there is no direct experimental proof, it is generally agreed that this is the 

130-kilobar a^e phase change observed in iron and in martensitic steels. This is also 

in   agreement   with   detailed   2-d   computations   made   by   Sandia   Laboratories.7 

7 
D.   A.   Shockey, et til.. Physical Changes Occurring in Armor Steel Under llypervelocity Impact, Stanford Re- 
search Institute Kinal Report on USAMERDC Contract DAA D05-73-C-0025, March 1974. 
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Below the center of the crater and about at the end of the maerocracks, 

there is an extensive network of fine microcracks. It has been hypothesized that these 

are adiabatic shear lines.8 In the region of the microcracks, there are many relatively 

large voids. Most of these voids are intersected by one or more of the microcracks. 
The reason for the microcracks and voids is not known. 

The spall layer is formed when the stress in the tensile wave reflected from 
the rear surface exceeds the spall threshold, measured at 38 kilobars for MS-12560 
steel by Sandia Laboratories.9 This is distinctly different from scabbing, which occurs 

when a penetrator or a shaped charge jet passes through the armor. In this latter case, 
some of the back surface surrounding the hole also may be ejected in the form of small 
fragments. This is often erroneously referred to as backface spallation. It has been 
suggested that armor can be hardened against scabbing by using homogeneous steel 
which has not been rolled parallel to the back surface.10 

The backface bulge 5, which has the same thickness as the spall layer, in- 
creases exponentially with impact velocity, i.e., 

k(V-V   ) 
5 = 5oe (1) 

In this relation, 5 is the thickness of the backface bulge at incipient spall, V is the 
corresponding velocity, and k is an empirical constant. This relation is plotted in 
Figure 2 for 0.953-centimeter nylon spheres impacting 1.25-centimeter-tliick MS-12560 
steel. It is seen that the experimental points fall remarkably well on the line. When 

the spall layer thickness becomes equal to the initial thickness of the spall plug (dis- 
tance from the center of the spall layer to the backface), the backface is ejected in the 
form of a plug or as small fragments. Based on numerous experiments, the value for 
8 can be taken as 0.01 centimeter. As indicated above, the spall layer was generally 

parallel to the backface. Thus, a single spall measurement is sufficient to determine the 
velocity Vo required to cause backface spall. 

In all cases where the projectiles were solid spheres and where backface spall 
resulted, the backface was ejected as a single plug. However, it was thought that a 
hollow sphere might cause backface spall at lower velocities than would solid spheres 
of the same weight (i.e., at equal impact kinetic energies); and it was thought that they 
might cause backface fragmentation. The reasoning behind these thoughts was that 
the impacting mass per unit area for the hollow sphere would be relatively small at the 

D.   A.  Shockey, et al., Physical Changes Occurring in Armor Steel Under llypervelocity Impact, Stanford Re- 
search Institute Final Report on USAMERDC Contract DAA D05-73-C-0025, March 1974. 

9 Ibid. 

M. Backman, Naval Weapons Center. Private Communication, April 1974. 
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Figure 2.  Backface bulge (or spall layer thickness) vs. impact velocity. 



center, which would cause the spall layer to form nearer to the backface than it would 

for a solid sphere; the impacting mass per unit area would be large at the periphery, 

thus possibly resulting in an "irregular" compressive stress wave. The results of a few 
experiments seem to bear out these hypotheses, although more analysis is needed. 

As a result of the hollow sphere experiments as well as other experiments, 
several computer-designed projectiles (spallators) were built for the purpose of opti- 

mizing backface fragmentation. These spallators were Lexan cylinders with impacting 
steel tips. They weighed 3.5 grams. On impacting 3-centimeter-thick wrought steel, 
the spallators caused 90 grams of the backface to fragment into more than a dozen 
pieces, which penetrated a 0.15-centimeter-thick aluminum witness plate. The spread 

in the eject angle was about 50°. Thus, these experiments clearly show that optimum 

spallators are feasible (a 200:1 mass eject ratio is the design goal). 

111. RESULTS 

4. New Experiments. When this research program first started in 1972, it was 

proposed that liquid projectiles be used. The liquid would, of course, be encased in 
some type of hollow shell, such as a hollow Lexan sphere, but most of the projectile 
mass would be in the form of a liquid. The reason for using liquids (mostly water) 
was because of their low sublimation energy. It was hypothesized that, at impact 
velocities of 5 to 10 km/s, a large amount of the impacting kinetic energy would go 
into vaporization of the projectile/target combination. Much of this energy would be 
lost; i.e., would not contribute to the process of shock formation in the target. 
Accordingly, it was felt desirable to have projectiles with a low sublimation (or vapori- 
zation) energy, such as water. Additional impact energy is lost because of penetration. 
Hence, low-density projectile materials were proposed. 

One of the reasons for considering small projectiles was so that a large 
number of them could be loaded into a warhead and fired in a shotgun pattern, thus 
providing a large lethal radius. The primary target of concern was steel armor 2 to 3 
centimeters thick. It was initially assumed that the projectile diameter should be 
approximately the same as the target thickness in order to alleviate loss of shock 
strength due to spherical divergence of the shock in the target. If the projectile mass is 
to be about 1 gram, this again suggests low-density material for the projectiles. 

During the course of the early experimentation, it was found that the en- 

cased liquid projectiles often broke upon firing. This resulted in the loss of numerous 

test shots. In addition, the liquid would cause damage to the light gas-gun. Hence, 
solid plastics (mostly nylon), which have even lower sublimation energies (~ 200 

cal/g), were used in place of the liquids. Experimental results for nylon and Lexan- 
encased water are about the same. 



One of the experimental objectives was to determine the importance of 
sublimation energy as an impact parameter. An MgLi alloy (LA141A) with a density 

of 1.35 g/cm3 has been used successfully for projectile materials. A spberical MgLi 
projectile (V = 5.2 km/s, D = 0.95 centimeter, and m = 0.65 gram) was fired against 
1.25-centimeter-thick MS-12560 steel armor (Figure 3). In a qualitative way, it 
appeared to cause considerably more damage than comparable nylon spheres. The 
value of the sublimation energy is not presently available, but the melting point 
(~600° C) is considerably higher than for nylon; hence, the sublimation energy should 
be considerably higher. Thus, a tentative conclusion is that other parameters may be 
more important than sublimation energy. However, this is based on a single shot; and 
much more analysis is needed. 

Two ceramics were tested, A1203 and WC. These have a high sublimation 
energy. The A1203 resulted in some spallation, but much less than for comparable 

nylon. The WC shot resulted in a very large and deep crater but no spallation. A tenta- 

tive conclusion from these shots is that sublimation energy may be important. 

A qualitative and partial explanation for some of these results can be ob- 

tained by comparing the impedances of the undamaged materials, although the geome- 
try and impact conditions for the above shots are considerably different than those for 
which the following analysis holds. 

An abrupt change in the physical properties of a material will result in the 
modification of a pressure pulse as it encounters this change. In general, a portion of 
the pulse will be transmitted, and a portion will be reflected. The relations which 
describe the modification of a pulse are based upon the boundary conditions of con- 
tinuity of pressure and continuity of particle velocity across the interface between two 

materials. These relations depend upon the value of pc, called the "characteristic im- 
pedance," of the two materials. If poco is for the projectile and p c( for the target, 
and if Po is the effective pulse amplitude for the projectile, the amplitude of the 
component transmitted to the target is: 

F = 
2p,c, 

_PtCt+PoCo 
P..; (2) 

and the reflected component is: 

PtCt-PoCo 

PlCl+PoCo 
(3) 
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These relations are somewhat simplified hy letting 

"tct K=^^, (4) 

giving 

P 

*^o   o 

2K. 
K- 1 

(5) 

Values for this ratio are shown in the following lahle: 

Impedance and Pressure Ratios for Various Projectile Materials 

Material Density 
(g/cm3) 

Sound Velo< 
(km/s) 

:ity pc K P,/Pr 

WC 15.02 5.2 78 0.513 -2.1 
Al203 3.95 9.9 39 1.03 6.8 
Steel 7.9 5 40 1 0 
Nylon 1.14 2.5 2.9 13.8 2.8 
MgLi 1.35 4.25 5.9 6.8 2.34 

Any conclusions drawn from these values must be considered tentative; however, there 
is reasonable qualitative agreement with experiment. For example, WC has a large 
impedance and a negative pressure ratio. This suggests that spallation should not be 
obtained as shown by experiment. On the other hand, impedances for nylon and MgLi 
are low suggesting large spallation, also shown by experiment. 

In attempting to develop damage criteria, impact kinetic energy and impact 
momentum have been compared as parameters. According to Shockey et al.," steel 
and nylon spherical projectiles cause about the same spallation damage at equal kinetic 
energies; but, on the basis of equal momenta, nylon is much more damaging than steel. 
Based on MERADCOM analysis, it is not clear that this is correct. Furthermore, the 
relevant damage parameters are not known; e.g., it is not known which is the more 
important parameter, energy or momentum. 

D. A. Shockey, et al.. Physical Changes Occurring in Armor Steel Under Hypervelocity Impact, Stanford Re- 
search Institute Kinal Report on USAMEKDC Contract DAA D05-73-C-0025, March 1974. 



ESR steel is made by a process of electroslag refining in which an ingot or 
rolled slab forms an electrode suspended in a water-cooled copper mold with its tip in 
a pool of specially formulated flux. The electrode is rcmelted by the flow of electric 

current from the tip through the flux and into the lower portion of the mold. The flux 

becomes superheated and melts the metal at the tip of the electrode, causing a continu- 
ous fall of droplets to form a new ingot below. In the process of melting and passage 

of droplets through the flux pool, the metal is refined. Accidental contaminates from 

refractories and oxidation during pouring are avoided. The undesirable elements, oxy- 
gen and sulfur, are reduced significantly, resulting in a steel that is extremely clean and 
virtually free from nonmetallic inclusions. What few inclusions remain are widely 
dispersed due to progressive solidification. MERADCOM tested a specimen   of 

ESR steel 1.25 centimeters thick in the NRL light gas-gun facility. This specimen had 

a tensile strength of 21.6 kilobars, which is about twice that of the MS-12560 steel 
used in most of the previous tests. The Rockwell hardness was 55.3 at 30° C, about 
one-third greater than for the MS-12560 steel. The spherical nylon projectile weighed 

0.52 gram and had a diameter of 0.95 centimeter. The impact velocity was 5.3 km/s. 
The resulting spallation is shown in Figure 4. The height of the backface bulge was 0.1 

centimeter. From Figure 2, the corresponding height of the backface bulge for MS- 
12560 steel would have been 0.5 centimeter, although backface spall actually occurred 
at about 0.4 centimeter. Of particular interest is the shape of the spall layer. It is 
curved in a direction opposite to that of the bulge and has a much more pronounced 
curvature. In most of the previous tests, the spall layers of similar thickness were 
parallel to the backface bulge. Based on equation 1, the amount of ESR steel showing 
the same momentum damage as for MS-12560 steel would weigh 16 percent less; it 
would weigh 35 percent less if the parameter were impact kinetic energy. 

It has been suggested that a piece of plastic on the backside of the armor 

would alleviate the backface spallation, or fragmentation, thus protecting soft interior 
components (of a military vehicle) from damage. This was tested on a 1.25-centimeter- 
thick MS-12560 steel target which had 0.9 centimeter of Plexiglas glued to the back- 
face. The impacting spherical projectile was nylon at 0.5 gram and 0.95 centimeter 
diameter. The impact velocity was 5.3 km/s. The result is shown in Figure 5. The 
ejected Plexiglas was highly fragmented and would have done considerable damage to 
interior components. The ejected mass was about 40 times greater than the mass of 
the impacting nylon sphere. At the impact velocity of 5.3 km/s, the steel target would 
have exhibited backface spall. This type of damage was alleviated; however, it is seen 

from Figure 5 that a small backface bulge did occur. The impedance mismatch K 
between steel and Plexiglas is probably greater than an order of magnitude;hence, it is 
questionable that the ejected Plexiglas was due to spallation of the Plexiglas. Instead, 
it was probably due to simple displacement resulting from formation of the backface 

bulge in the steel, which occurred in about 0.1 second. An experiment to resolve this 
question will be performed in the near future. 

10 
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Figure 5. Nylon spherical projectile impact on wrought steel/Plexiglas target. 
(V = 5.29 km/s, D = 0.953 centimeter, and m = 0.52 gram) 
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Figure 6.  Nylon spherical projectile impact on wrought steel/Plexiglas target. 
(V = 5.22 km/s, D = 0.953 centimeter, and m = 0.52 gram) 
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Another interface experiment was made in which the Plexiglas was in front 
of the steel instead of behind. Everything else was the same as described in the preced- 

ing paragraph. In this case, the Plexiglas was shattered, as shown in Figure 6. There 

was virtually no damage to the steel armor. This seems to be an obvious result since 

most of the shock energy induced in the Plexiglas by the nylon projectile impact would 

reflect from the steel surface, as shown by the numbers in the table (page 9). 

Finally, there are two other important and inexplicable results which have 
lieen reported previously.12 The first is that smaller spheres cause relatively more 
damage than larger spheres. The second is somewhat more complicated. It is well 
known that martensitic steel exhibits the 130-kilobar phase change, as noted previous- 
ly. It was further postulated that this phase change affected the stress pulse in such a 
way as to enhance spallation phenomena. Measurements show that austenitic steel 
does not exhibit the same phase change. However, an impact experiment on austenitic 
steel showed that the spallation was just as large and perhaps larger than for martensitic 
steel. It is apparent that there are many parameters involved and that their interde- 
pendency is largely unknown. 

IV. SUMMARY AND CONCLUSIONS 

5. Summary and Conclusions. New and important phenomena have been 
isolated. These include crater serrations, crater macrocracks, adiabatic shear lines and 
voids beneath the craters, and various aspects of the spall layer and backface spall. 
Some of the older phenomena have been delineated. These include the 130-kilobar 
phase change in martensitic steel and details of the spall layer. Further experiments 
have demonstrated that it is feasible to design a projectile for the specific purpose of 
optimizing backface spallation and fragmentation. 

Perhaps the most important conclusion is that there are numerous param- 
eters involved in hypervelocity impact-induced spall. These must be isolated and de- 
lineated in order to develop a heuristic spallation theory. The 2-d calculations are far 
too complicated and unreliable to use for predictive purposes. 

12 D. A. Shockey, et al., Physical Changes Occurring in Armor Steel Under Hypervelocity Impact, Stanford Re- 
search Institute Final Report on USAMERDC Contract DAA D05-73-C-0025, March 1974. 
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